Happy Birthday Kaprekar

Standard

image

Today is 110th birthday of great Indian mathematician D. R. Kaprekar

Dattaraya Ramchandra Kaprekar (17 January 1905 – 1986) was an Indian recreational mathematician who described several classes of natural numbers. For his entire career (1930–1962) he was a schoolteacher at Nasik in Maharashtra. He published extensively, writing about such topics as recurring decimals, magic squares, and integers with special properties. Kaprekar was once laughed at by most contemporary Indian mathmaticians for his so-called ‘trivial’ play with numbers. It required G. H. Hardy to recognize Ramanujan while Kaprekar’s recognition came through Martin Gardner (he wrote about Kaprekar in his “Mathematical Games” column in March 1975 issue of “Scientific American”)

Here I would discuss a mathemagical trick re-disvovered by Kaprekar called “Gap Filling Process” (though claimed to be present in vedic mathematics)

Gap filling process

This process is magical one and will make you Mathemagician

Let, (a)_n stand for a repeated n times (called Repunit a).

Then, we shall denote (a)_n ^m for m-th power of (a)_n

(9)_n ^m can be obtained by remembering the expansion for (9)^m and inserting in the gaps between digits of expansion of (9)^m with the numbers (9)_{n-1} and (0)_{n-1} alternately, beginning from left to right. No gap is counted after the unit digit.

Let’s see an example:
Find the value of (99999)\times (99999)\times (99999) = (99999)^3 = (9)_5 ^3.

Even my scientific calculator fails to calculate this exact value !

We know 9^3 = 729

Then the gaps are: ----7----2----9
Now fill the blanks alternately with (9)_{5-1} = (9)_4 and (0)_{5-1} = (0)_4.
We get: 9999\textbf{7}0000\textbf{2}9999\textbf{9}
Hence, (99999)\times (99999)\times (99999) = 999970000299999

Advertisements

4 responses »

  1. Pingback: Why I want to be a Mathematician? | Gaurish4Math

  2. This method is valid only for m = 1,2,3,4,5 in 9_n^m. For higher powers we need to make alterations using the philosophy behind DEMLO NUMBERS (i.e. using digit sum in between)

    Like

    • As pointed out by Avinash Anand, this method is NOT universally valid. (Time for Discussion)
      For example: the above method needs some alterations for (9)_{16}^6.
      If you discover it please let me know.

      Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s