Yesterday, I was fortunate enough to attend a lecture delivered by Dr. Ritwik Mukherjee, one of my professors, to motivate the study of algebraic topology. Instead of using the “soft targets” like Möbius strip etc. he used the following profound theorem for motivation:

If is continuous then there exists an such that: .

This is known as Borsuk-Ulam Theorem. To appreciate this theorem, one need to know a fundamental theorem about continuous functions known as Intermediate Value Theorem:

If a continuous function, , with an interval, , as its domain, takes values and at each end of the interval, then it also takes any value between and at some point within the interval.

Here is a video by James Grime illustrating Borsuk-Ulam Theorem in 3D:

Though the implications of the theorem itself are beautiful, following corollary known as Ham sandwich theorem is even more interesting. Here is a video by Marc Chamberland explaining this theorem:

Here is a video by Michael Stevens illustrating Brouwer fixed-point theorem in some interesting cases:

Now the applications of this theorem are numerous, and there is a book dedicated to this theorem: “Fixed Points” by Yu. A. Shashkin. But my favourite application of this fixed point theorem is to the board game called Hex, explained by Marc Chamberland here:

If you come across some other video/article discussing the coolness of “Borsuk-Ulam Theorem” please let me know.

Edit (18 May 2018): Proof of Brouwer’s Fixed Point Theorem by Tai-Danae Bradley:

Yes, this is one of the most profound insights of Stanislaw Ulam (and Borsuk). Refer to “Adventures of a mathematician” by Stanislaw Ulam. I think some applications have been found of this theorem in Combinatorics. There is a book on it by Jiri Matousek. It is available in Amazon India….I am not sure…but please do check…Or, your teacher, Dr. Ritwik Mukherjee might already be aware of some deeper literature in this area.

Yes, there are applications of this theorem to combinatorics. For example, Sperner’s Lemma (and its application to Hex game..). Yesterday, Burkard Polster (aka The Mathologer) uploaded a video discussing its application to fair division problem: https://youtu.be/7s-YM-kcKME
I tried to read Ulam’s biography 3 years ago, but wasn’t able to finish it since I didn’t enjoyed his writing style.

Also see this video: https://youtu.be/stw4baA-jb8

LikeLiked by 1 person

Found this very interesting. Great post!

LikeLike

All credit goes to James Grime, Marc Chamberland, Grant Sanderson and Michael Stevens.

LikeLiked by 1 person

Yes, this is one of the most profound insights of Stanislaw Ulam (and Borsuk). Refer to “Adventures of a mathematician” by Stanislaw Ulam. I think some applications have been found of this theorem in Combinatorics. There is a book on it by Jiri Matousek. It is available in Amazon India….I am not sure…but please do check…Or, your teacher, Dr. Ritwik Mukherjee might already be aware of some deeper literature in this area.

LikeLiked by 1 person

Yes, there are applications of this theorem to combinatorics. For example, Sperner’s Lemma (and its application to Hex game..). Yesterday, Burkard Polster (aka The Mathologer) uploaded a video discussing its application to fair division problem: https://youtu.be/7s-YM-kcKME

I tried to read Ulam’s biography 3 years ago, but wasn’t able to finish it since I didn’t enjoyed his writing style.

LikeLike

thanks for the pointers to its connections to Combinatorics!

LikeLike