Real vs Complex numbers


I want to talk about the algebraic and analytic differences between real and complex numbers. Firstly, let’s have a look at following beautiful explanation by Richard Feynman (from his QED lectures) about similarities between real and complex numbers:


From Chapter 2 of the book “QED – The Strange Theory of Light and Matter” © Richard P. Feynman, 1985.

Before reading this explanation, I used to believe that the need to establish “Fundamental theorem Algebra” (read this beautiful paper by Daniel J. Velleman to learn about proof of this theorem) was only way to motivate study of complex numbers.

The fundamental difference between real and complex numbers is

Real numbers form an ordered field, but complex numbers can’t form an ordered field. [Proof]

Where we define ordered field as follows:

Let \mathbf{F} be a field. Suppose that there is a set \mathcal{P} \subset \mathbf{F} which satisfies the following properties:

  • For each x \in \mathbf{F}, exactly one of the following statements holds: x \in \mathcal{P}, -x \in \mathcal{P}, x =0.
  • For x,y \in \mathcal{P}, xy \in \mathcal{P} and x+y \in \mathcal{P}.

If such a \mathcal{P} exists, then \mathbf{F} is an ordered field. Moreover, we define x \le y \Leftrightarrow y -x \in \mathcal{P} \vee x = y.

Note that, without retaining the vector space structure of complex numbers we CAN establish the order for complex numbers [Proof], but that is useless. I find this consequence pretty interesting, because though \mathbb{R} and \mathbb{C} are isomorphic as additive groups (and as vector spaces over \mathbb{Q}) but not isomorphic as rings (and hence not isomorphic as fields).

Now let’s have a look at the consequence of the difference between the two number systems due to the order structure.

Though both real and complex numbers form a complete field (a property of topological spaces), but only real numbers have least upper bound property.

Where we define least upper bound property as follows:

Let \mathcal{S} be a non-empty set of real numbers.

  • A real number x is called an upper bound for \mathcal{S} if x \geq s for all s\in \mathcal{S}.
  • A real number x is the least upper bound (or supremum) for \mathcal{S} if x is an upper bound for \mathcal{S} and x \leq y for every upper bound y of \mathcal{S} .

The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real numbers.
This least upper bound property is referred to as Dedekind completeness. Therefore, though both \mathbb{R} and \mathbb{C} are complete as a metric space [proof] but only \mathbb{R} is Dedekind complete.

In an arbitrary ordered field one has the notion of Dedekind completeness — every nonempty bounded above subset has a least upper bound — and also the notion of sequential completeness — every Cauchy sequence converges. The main theorem relating these two notions of completeness is as follows [source]:

For an ordered field \mathbf{F}, the following are equivalent:
(i) \mathbf{F} is Dedekind complete.
(ii) \mathbf{F} is sequentially complete and Archimedean.

Where we defined an Archimedean field as an ordered field such that for each element there exists a finite expression 1+1+\ldots+1 whose value is greater than that element, that is, there are no infinite elements.

As remarked earlier, \mathbb{C} is not an ordered field and hence can’t be Archimedean. Therefore, \mathbb{C}  can’t have least-upper-bound property, though it’s complete in topological sense. So, the consequence of all this is:

We can’t use complex numbers for counting.

But still, complex numbers are very important part of modern arithmetic (number-theory), because they enable us to view properties of numbers from a geometric point of view [source].


3 responses »

  1. This is one of my pet topics…comparison of various number systems. Once I told my IB student, “there ain’t any thing real about real numbers, and there ain’t anything complex about complex numbers.” You have, of course, summarized it v well for us, your readers.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s