Most of us are aware of the following consequence of Fundamental Theorem of Arithmetic:

There are infinitely many prime numbers.

The classic proof by Euclid is easy to follow. But I wanted to share the following two analytic equivalents (infinite series and infinite products) of the above purely arithmetical statement:

- diverges.

For proof, refer to this discussion: https://math.stackexchange.com/q/361308/214604

- , where is any complex number with .

The outline of proof, when is a real number, has been discussed here: http://mathworld.wolfram.com/EulerProduct.html

### Like this:

Like Loading...

*Related*

I’ve often wondered about what I call ‘prime decimals’ – decimals that cannot be divided by other decimals (except 0.0001, for example). I wonder if the factors of the integral part of decimal numbers affect the likelihood of those numbers being ‘prime’.

LikeLike

I think your intuition is correct, since the extra decimals won’t disturb the divisibility. For example, 0.00002 divides 0.04, since 2 divides 4 and 0.00002 < 0.04.

LikeLiked by 1 person

Pingback: Prime Consequences | Yassin Balja