Category Archives: Review

Listening Maths

Standard

Earlier I told about new mediums now available to enjoy maths. You can find a list of YouTube channels, to begin with here. And a list of dedicated math podcasts here.

In this post, I want to point out some episodes from the  podcast “In Our Time” which discuss mathematics:

Apart from them, another podcast worth listening to is “The Wizard of Mathematics, Srinivasa Ramanujan” by Prof. Srinivas Kotyada on FM Gold:

Advertisements

Riemann Hypothesis is back in news

Standard

For details, visit Terence Tao’s blog: https://terrytao.wordpress.com/

Here is a nice discussion thread from Reddit

 

Birch and Swinnerton-Dyer Conjecture

Standard

This is part of the 6 unsolved Millennium Problems. Following is a beautiful exposition of the statement and consequences of this conjecture:

Anybody with high-school level knowledge can benefit from this video.

What is…? and A-To-Z

Standard

If you like reading nice expositions to mathematical terminologies, then I would suggest you to consider following two websites:

what-is

a-z.png

 

In the praise of norm

Standard

If you have spent some time with undergraduate mathematics, you would have probably heard the word “norm”. This term is encountered in various branches of mathematics, like (as per Wikipedia):

But, it seems to occur only in abstract algebra. Although the definition of this term is always algebraic, it has a topological interpretation when we are working with vector spaces.  It secretly connects a vector space to a topological space where we can study differentiation (metric space), by satisfying the conditions of a metric.  This point of view along with an inner product structure, is explored when we study functional analysis.

Some facts to remember:

  1. Every vector space has a norm. [Proof]
  2. Every vector space has an inner product (assuming “Axiom of Choice”). [Proof]
  3. An inner product naturally induces an associated norm, thus an inner product space is also a normed vector space.  [Proof]
  4. All norms are equivalent in finite dimensional vector spaces. [Proof]
  5. Every normed vector space is a metric space (and NOT vice versa). [Proof]
  6. In general, a vector space is NOT same a metric space. [Proof]

Dimension clarification

Standard

In several of my previous posts I have mentioned the word “dimension”. Recently I realized that dimension can be of two types, as pointed out by Bernhard Riemann in his famous lecture in 1854. Let me quote Donal O’Shea from pp. 99 of his book “The Poincaré Conjecture” :

Continuous spaces can have any dimension, and can even be infinite dimensional. One needs to distinguish between the notion of a space and a space with a geometry. The same space can have different geometries. A geometry is an additional structure on a space. Nowadays, we say that one must distinguish between topology and geometry.

[Here by the term “space(s)” the author means “topological space”]

In mathematics, the word “dimension” can have different meanings. But, broadly speaking, there are only three different ways of defining/thinking about “dimension”:

  • Dimension of Vector Space: It’s the number of elements in basis of the vector space. This is the sense in which the term dimension is used in geometry (while doing calculus) and algebra. For example:
    • A circle is a two dimensional object since we need a two dimensional vector space (aka coordinates) to write it. In general, this is how we define dimension for Euclidean space (which is an affine space, i.e. what is left of a vector space after you’ve forgotten which point is the origin).
    • Dimension of a differentiable manifold is the dimension of its tangent vector space at any point.
    • Dimension of a variety (an algebraic object) is the dimension of tangent vector space at any regular point. Krull dimension is remotely motivated by the idea of dimension of vector spaces.
  • Dimension of Topological Space: It’s the smallest integer that is somehow related to open sets in the given topological space. In contrast to a basis of a vector space, a basis of topological space need not be maximal; indeed, the only maximal base is the topology itself. Moreover, dimension is this case can be defined using  “Lebesgue covering dimension” or in some nice cases using “Inductive dimension“.  This is the sense in which the term dimension is used in topology. For example:
    • A circle is one dimensional object and a disc is two dimensional by topological definition of dimension.
    • Two spaces are said to have same dimension if and only if there exists a continuous bijective map between them. Due to this, a curve and a plane have different dimension even though curves can fill space.  Space-filling curves are special cases of fractal constructions. No differentiable space-filling curve can exist. Roughly speaking, differentiability puts a bound on how fast the curve can turn.
  • Fractal Dimension:  It’s a notion designed to study the complex sets/structures like fractals that allows notions of objects with dimensions other than integers. It’s definition lies in between of that of dimension of vector spaces and topological spaces. It can be defined in various similar ways. Most common way is to define it as “dimension of Hausdorff measure on a metric space” (measure theory enable us to integrate a function without worrying about  its smoothness and the defining property of fractals is that they are NOT smooth). This sense of dimension is used in very specific cases. For example:
    • A curve with fractal dimension very near to 1, say 1.10, behaves quite like an ordinary line, but a curve with fractal dimension 1.9 winds convolutedly through space very nearly like a surface.
      • The fractal dimension of the Koch curve is \frac{\ln 4}{\ln 3} \sim 1.26186, but its topological dimension is 1 (just like the space-filling curves). The Koch curve is continuous everywhere but differentiable nowhere.
      • The fractal dimension of space-filling curves is 2, but their topological dimension is 1. [source]
    • A surface with fractal dimension of 2.1 fills space very much like an ordinary surface, but one with a fractal dimension of 2.9 folds and flows to fill space rather nearly like a volume.

This simple observation has very interesting consequences. For example,  consider the following statement from. pp. 167  of the book “The Poincaré Conjecture” by Donal O’Shea:

… there are infinitely many incompatible ways of doing calculus in four-space. This contrasts with every other dimension…

This leads to a natural question:

Why is it difficult to develop calculus for any \mathbb{R}^n in general?

Actually, if we consider \mathbb{R}^n as a vector space then developing calculus is not a big deal (as done in multivariable calculus).  But, if we consider \mathbb{R}^n as a topological space then it becomes a challenging task due to the lack of required algebraic structure on the space. So, Donal O’Shea is actually pointing to the fact that doing calculus on differentiable manifolds in \mathbb{R}^4 is difficult. And this is because we are considering \mathbb{R}^4 as 4-dimensional topological space.

Now, I will end this post by pointing to the way in which definition of dimension should be seen in my older posts:

Borsuk-Ulam Theorem

Standard

Yesterday, I was fortunate enough to attend a lecture delivered by Dr. Ritwik Mukherjee, one of my professors, to motivate the study of algebraic topology. Instead of using the “soft targets” like Möbius strip etc. he used the following profound theorem for motivation:

If f: S^n \to \mathbb{R}^n is continuous then there exists an x\in S^n such that:  f(-x)=f(x).

This is known as Borsuk-Ulam Theorem. To appreciate this theorem, one need to know a fundamental theorem about continuous functions known as Intermediate Value Theorem:

If a continuous function, f, with an interval, [a, b], as its domain, takes values f(a) and f(b) at each end of the interval, then it also takes any value between f(a) and f(b) at some point within the interval.

Here is a video by James Grime illustrating Borsuk-Ulam Theorem in 3D:

Though the implications of the theorem itself are beautiful, following corollary known as Ham sandwich theorem is even more interesting. Here is a video by Marc Chamberland explaining this theorem:

Also, yesterday Grant Sanderson uploaded a video exploring the relation of Borsuk-Ulam Theorem with a fair division problem known as Necklace splitting problem:

But, to my amazement, this theorem is related to one of the other most astonishing theorem of algebraic topology called Brouwer fixed-point theorem:

Every continuous function from a closed ball of a Euclidean space into itself has a fixed point.

Here is a video by Michael Stevens illustrating Brouwer fixed-point theorem in some interesting cases:

 

Now the applications of this theorem are numerous, and there is a book dedicated to this theorem: “Fixed Points” by Yu. A. Shashkin. But my favourite application of this fixed point theorem is to the board game called Hex, explained by Marc Chamberland here:

If you come across some other video/article discussing the coolness of “Borsuk-Ulam Theorem” please let me know.