# Understanding Geometry – 4

Standard

Aleksej Ivanovič Markuševič’s book, “Remarkable Curves” discusses the properties of ellipses, parabolas, hyperbolas, lemniscates, cycloids, brachistochrone, spirals and catenaries.  Among these “lemniscates” are the ones that I encountered only once before starting undergraduate education (all other curves appeared frequently in physics textbooks) and that too just to calculate the area enclosed by this curve. So I will discuss the properties of lemniscates in this post.

Let’s begin with the well-known curve, ellipse. An ellipse is the locus of points whose sum of distances from two fixed points (called foci) is constant. My favourite fact about ellipses is that we can’t find a general formula for the perimeter of an ellipse, and this little fact leads to the magical world of elliptic integrals. This, in turn, leads to the mysterious elliptic functions, which were discovered as inverse functions of elliptic integrals. Further, these functions are needed in the parameterization of certain curves, now called elliptic curves. For more details about this story, read the paper by Adrian Rice and Ezra Brown, “Why Ellipses are not Elliptic curves“.

Lemniscate is defined as the locus of points whose product of distances from two fixed points $F_1$ and $F_2$ (called foci) is constant. Lemniscate means, “with hanging ribbons” in Latin.  If the length of the segment $\overline{F_1F_2}$ is $c$ then for the midpoint of this line segment will lie on the curve if the product constant is $c^2/4$. In this case we get a figure-eight lying on its side.

Lemniscate of Bernoulli; By Kmhkmh (Own work) [CC BY 4.0], via Wikimedia Commons

The attempt to calculate the perimeter of the above curve leads to elliptic integral, hence can’t derive a general formula for its perimeter. Just like an ellipse!

If we equate the value of the constant product not to $c^2/4$ but to another value, the lemniscate will change its shape. When the constant is less than $c^2/4$, the lemniscate consists of two ovals, one of which contains inside it the point $F_1$, and the other the point $F_2$.

Cassini oval (x^2+y^2)^2−2c^2(x^2−y^2)=a^4−c^4; Source: https://www.encyclopediaofmath.org/legacyimages/common_img/c020700b.gif

When the product constant is greater than $c^2/4$ but less than $c^2/2$, the lemniscate has the form of a biscuit. If the constant is close to $c^2/4$, the “waist” of the biscuit is very narrow and the shape of the curve is very close to the figure-eight shape.

Cassini oval (x^2+y^2)^2−2c^2(x^2−y^2)=a^4−c^4; Source: https://www.encyclopediaofmath.org/legacyimages/common_img/c020700b.gif

If the constant differs little from $c^2/2$, the waist is hardly noticeable, and if the constant is equal or greater than $c^2/2$ the waist disappears completely, and the lemniscate takes the form of an oval.

Cassini oval (x^2+y^2)^2−2c^2(x^2−y^2)=a^4−c^4; Source: https://www.encyclopediaofmath.org/legacyimages/common_img/c020700a.gif

We can further generalize this whole argument to get lemniscate with an arbitrary number of foci, called polynomial lemniscate.

# Understanding Geometry – 2

Standard

If you want to brush up your high school geometry knowledge, then KhanAcademy is a good place to start. For example, I learned a new proof of Pythagoras Theorem (there are 4 different proofs on KhanAcademy) which uses scissors-congruence:

In this post, I will share with you few theorems from L. I. Golovina and I. M. Yaglom’s “Induction in Geometry ”  which I learned while trying to prove Midpoint-Polygon Conjecture.

Theorem 1: The sum of interior angles of an n-gon is $2\pi (n-2)$.

Theorem 2: The number of ways in which a convex n-gon can be divided into triangles by non-intersecting diagonals is given by

$\displaystyle{\frac{2(2n-5)!}{(n-1)!(n-3)!}}$

Theorem 3: Given a $\triangle ABC$, with $n-1$ straight lines $CM_1, CM_2, \ldots CM_{n-1}$ drawn through its vertex $C$, cutting the triangle into $n$ smaller triangles $\triangle ACM_1, \triangle M_1CM_2, \ldots, \triangle M_{n-1}CB$. Denote by $r_1, r_2, \ldots r_n$ and $\rho_1, \rho_2, \ldots, \rho_n$ respectively the radii of the inscribed and circumscribed circles of these triangles (all the circumscribed circles are inscribed within the angle $C$ of the triangle) and let $r$ and $\rho$ be the radii of the inscribed and circumscribed circles (respectively) of the $\triangle ABC$ itself. Then

$\displaystyle{\frac{r_1}{\rho_1} \cdot\frac{r_2}{\rho_2} \cdots\frac{r_n}{\rho_n} =\frac{r}{\rho} }$

Theorem 4: Any convex n-gon which is not a parallelogram can be enclosed by a triangle whose sides lie along three sides of the given n-gon.

Theorem 5 (Levi’s Theorem): Any convex polygon which is not a parallelogram can be covered with three homothetic polygons smaller than the given one.

The above theorem gives a good idea of what “combinatorial geometry” is all about. In this subject, the method of mathematical induction is widely used for proving various theorems. Combinatorial geometry deals with problems, connected with finite configurations of points or figures. In these problems, values are estimated connected with configurations of figures (or points) which are optimal in some sense.

Theorem 6 (Newton’s Theorem): The midpoints of the diagonals of a quadrilateral circumscribed about a circle lie on one straight line passing through the centre of the circle.

Theorem 7 (Simson’s Theorem): Given a $\triangle ABC$ inscribed in the circle $S$ with an arbitrary point $P$ on this circle. Then then feet of the perpendiculars dropped from the point $P$ to the sides of the $\triangle ABC$ are collinear.

We can extend the above idea of Simson’s line to any n-gon inscribed in a circle.

Theorem 8: A 3-dimensional space is divided into $\frac{(n+1)(n^2-n+6)}{6}$ parts by $n$ planes, each three of which intersect and no four of which have a common point.

Theorem 9: Given $n$ spheres in 3-dimesnional space, each four of which intersect. Then all these spheres intersect, i. e. there exists a point belonging to all the spheres.

Theorem 10 (Young’s Theorem): Given $n$ points in the plane such that each pair of them are at a distance of at most 1 from each other. Then all these points can be enclosed in a circle of radius $1/\sqrt{3}$.

I won’t be discussing their proofs since the booklet containing the proofs and the detailed discussion is freely available at Mir Books.

Also, I would like to make a passing remark about the existence of a different kind of geometry system, called “finite geometry“. A finite geometry is any geometric system that has only a finite number of points. The familiar Euclidean geometry is not finite because a Euclidean line contains infinitely many points. A geometry based on the graphics displayed on a computer screen, where the pixels are considered to be the points, would be a finite geometry. While there are many systems that could be called finite geometries, attention is mostly paid to the finite projective and affine spaces because of their regularity and simplicity. You can learn more about it here: http://www.ams.org/samplings/feature-column/fcarc-finitegeometries