Space Filling Curves

Gaurish4Math.wordpress.com*
korpal.gaurish@gmail.com

April 16, 2016

Prove that there exist a continuous surjective map from \mathbb{R} to \mathbb{R}^{2}. In other words, prove that Hilbert's Curve is a continuous surjective map.
Proof. Consider $f: \mathbb{R} \rightarrow[0,1]$

Observe that f is a continuous periodic function with period 2. Hence, $f(x+2 I)=f(x)$ for any integer I.

Now consider, $g:[0,1] \rightarrow[0,1] \times[0,1]$ where $g(t)=(x(t), y(t))$. We define the map g as:

$$
\left\{\begin{array}{l}
x(t)=\frac{1}{2} f(t)+\frac{1}{2^{2}} f\left(3^{2} t\right)+\frac{1}{2^{3}} f\left(3^{4} t\right)+\ldots=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} f\left(3^{2 n} t\right) \\
y(t)=\frac{1}{2} f(3 t)+\frac{1}{2^{2}} f\left(3^{3} t\right)+\frac{1}{2^{5}} f\left(3^{4} t\right)+\ldots=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} f\left(3^{2 n+1} t\right)
\end{array}\right.
$$

Now this map is continuous from Weierstrass M-test, which states that:
Suppose that $\left\{f_{n}\right\}$ is a sequence of real or complex-valued functions defined on a set A, and that there is a sequence of positive numbers $\left\{M_{n}\right\}$ satisfying

$$
\begin{gathered}
\forall n \geq 1, \forall x \in A:\left|f_{n}(x)\right| \leq M_{n} \\
\sum_{n=1}^{\infty} M_{n}<\infty
\end{gathered}
$$

Then the series

$$
\sum_{n=1}^{\infty} f_{n}(x)
$$

converges uniformly on A.
Thus, g is continuous because f is continuous.
Now we will prove that g is surjective, that is, for all $\left(x_{0}, y_{0}\right)$ in $[0,1] \times[0,1]$ there exist t_{0} in $[0,1]$ such that $x\left(t_{0}\right)=x_{0}$ and $y\left(t_{0}\right)=y_{0}$.

Trick: Represent the elements t_{0} in ternary and x_{0}, y_{0} in binary.

[^0]Hence we can write:

$$
\left\{\begin{array}{l}
x_{0}=0 \cdot a_{0} a_{2} a_{4} a_{6} \ldots=\sum_{i=0}^{\infty} \frac{1}{2^{i+1}} a_{2 i} \\
y_{0}=0 \cdot a_{1} a_{3} a_{5} a_{7} \ldots=\sum_{i=0}^{\infty} \frac{1}{2^{i+1}} a_{2 i+1}
\end{array}\right.
$$

where $a_{i} \in\{0,1\}$ for all i. Also,

$$
t_{0}=0 .\left(2 a_{0}\right)\left(2 a_{1}\right)\left(2 a_{2}\right) \ldots=\sum_{i=0}^{\infty} \frac{1}{3^{i+1}} 2 a_{i}
$$

where $\left(2 a_{i}\right) \in\{0,2\}$ for all i (motivating the idea of representing t_{0} in ternary)
Claim: $x\left(t_{0}\right)=x_{0}$ and $y\left(t_{0}\right)=y_{0}$
We will use the ternary expansion of t_{0} to simplify,

$$
\begin{aligned}
3^{n} t_{0} & =3^{n}\left(\sum_{i=0}^{\infty} \frac{2 a_{i}}{3^{i+1}}\right) \\
& =3^{n}\left(\sum_{i=0}^{n-1} \frac{2 a_{i}}{3^{i+1}}+\sum_{i=n}^{\infty} \frac{2 a_{i}}{3^{i+1}}\right) \\
& =2 I+3^{n} \sum_{i=n}^{\infty} \frac{2 a_{i}}{3^{i+1}}
\end{aligned}
$$

since $3^{n} \geq 3^{i+1}$ for $0 \leq i \leq n-1$, we conclude that $3^{n} \sum_{i=0}^{n-1} \frac{2 a_{i}}{3^{i+1}}$ is twice an integer (taking 2 out of summation). Now a_{n} can be either 0 or 1 . We will consider following two cases:
Case 1: $a_{n}=0$

$$
\begin{aligned}
3^{n} \sum_{i=n}^{\infty} \frac{2 a_{i}}{3^{i+1}} & =3^{n} \sum_{i=n+1}^{\infty} \frac{2 a_{i}}{3^{i+1}} \\
& \left.\leq 3^{n} \sum_{i=n}^{\infty} \frac{2}{3^{i+1}} \quad \text { (substitute maximum value of } a_{i}\right) \\
& =\frac{1}{3} \quad \text { (sum of infinite geometric progression) }
\end{aligned}
$$

Also observe that if we substitute minimum value of a_{i} we will get $0 \leq 3^{n} \sum_{i=n}^{\infty} \frac{2 a_{i}}{3^{2+1}}$, hence

$$
\begin{gathered}
0 \leq 3^{n} \sum_{i=n}^{\infty} \frac{2 a_{i}}{3^{i+1}} \leq \frac{1}{3} \\
\Rightarrow f\left(2 I+3^{n} \sum_{i=n}^{\infty} \frac{2 a_{i}}{3^{i+1}}\right)=0
\end{gathered}
$$

from the definition of f given in the starting.
Case 2: $a_{n}=1$

$$
\begin{aligned}
3^{n} \sum_{i=n}^{\infty} \frac{2 a_{i}}{3^{i+1}} & =\frac{2}{3}+3^{n} \sum_{i=n+1}^{\infty} \frac{2 a_{i}}{3^{i+1}} \\
& \leq \frac{2}{3}+3^{n} \sum_{i=n}^{\infty} \frac{2}{3^{i+1}} \quad \text { (substitute maximum value of } a_{i} \text {) } \\
& =\frac{2}{3}+\frac{1}{3} \quad \text { (sum of infinite geometric progression) } \\
& =1
\end{aligned}
$$

Also observe that if we substitute minimum value of a_{i} we will get $\frac{2}{3}+0 \leq 3^{n} \sum_{i=n}^{\infty} \frac{2 a_{i}}{3^{i+1}}$, hence

$$
\begin{gathered}
\frac{2}{3} \leq 3^{n} \sum_{i=n}^{\infty} \frac{2 a_{i}}{3^{i+1}} \leq 1 \\
\Rightarrow f\left(2 I+3^{n} \sum_{i=n}^{\infty} \frac{2 a_{i}}{3^{i+1}}\right)=1
\end{gathered}
$$

from the definition of f given in the starting.
Now combining both the above cases we conclude that:

$$
f\left(3^{n} t_{0}\right)=a_{n}
$$

Hence:

$$
\left\{\begin{array}{l}
x\left(t_{0}\right)=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} f\left(3^{2 n} t_{0}\right)=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} a_{2 n}=x_{0} \\
y\left(t_{0}\right)=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} f\left(3^{2 n+1} t_{0}\right)=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} a_{2 n+1}=y_{0}
\end{array}\right.
$$

Thus proving our claim. Hence we can conclude that g is a surjective.
From standard exercises in metric spaces we know that $[0,1]$ is homeomorphic to \mathbb{R} and $[0,1] \times[0,1]$ is homeomorphic to \mathbb{R}^{2}, where homeomorphism is defined as

A function $F: X \rightarrow Y$, between two topological $\operatorname{spaces}^{a}\left(X, T_{X}\right)$ and $\left(Y, T_{Y}\right)$ is called a homeomorphism if it has the following properties:

- F is a bijection,
- F is continuous,
- the inverse function F^{-1} is continuous.

If such a function exists, we say X and Y are homeomorphic.
${ }^{a}$ it's a set with some special properties, for its definition see http://mathworld.wolfram.com/
TopologicalSpace.html

Let $\phi: \mathbb{R} \rightarrow[0,1]$ and $\psi:[0,1] \times[0,1] \rightarrow \mathbb{R}^{2}$ be the homeomorphisms, then

Thus the composition, $\Gamma=\psi \circ g \circ \phi$ is the required continuous surjective map.
Exercise: Verify that the function $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined above will give Hilbert's Curve.

[^0]: *Proof explained by Prof. Manas Ranjan Sahoo, typed by Mr. Gaurish Korpal

