Tag Archives: arthur engle

Rooms and reflections

Standard

Consider the following entry from my notebook (16-Feb-2014):

The Art Gallery Problem: An art gallery has the shape of a simple n-gon. Find the minimum number of watchmen needed to survey the building, no matter how complicated its shape. [Source: problem 25, chapter 2, Problem Solving Strategies, Arthur Engel]

Hint: Use triangulation and colouring. Not an easy problem, and in fact there is a book dedicated to the theme of this problem: Art Gallery Theorems and Algorithms by Joseph O’Rourke (see chapter one for detailed solution). No reflection involved.

Then we have a bit harder problem when we allow reflection (28-Feb-2017, Numberphile – Prof. Howard Masur):

The Illumination Problem: Can any room (need not be a polygon) with mirrored walls be always illuminated by a single point light source, allowing for the repeated reflection of light off the mirrored walls?

The answer is NO. Next obvious question is “What kind of dark regions are possible?”. This question has been answered for rational polygons.

This reminds me of the much simpler theorem from my notebook (13-Jan-2014):

The Carpets Theorem: Suppose that the floor of a room is completely covered by a collection of non-overlapping carpets. If we move one of the carpets, then the overlapping area is equal to the uncovered area of the floor. [Source: §2.6, Mathematical Olympiad Treasures, Titu Andreescu & Bogdan Enescu]

Why I mentioned this theorem? The animation of Numberphile video reminded me of carpets covering the floor.

And following is the problem which motivated me write this blog post (17-May-2018, PBS Infinite Series – Tai-Danae):

Secure Polygon Problem: Consider a n-gon with mirrored walls, with two points: a source point S and a target point T. If it is possible to place a third point B in the polygon such that any ray from the source S passes through this point B before hitting the target T, then the polygon is said to be secure. Is square a secure polygon?

The answer is YES.  Moreover, the solution is amazing. Reminding me of the cross diagonal cover problem.