Category Archives: Philosophy

Education System


This blog post has nothing to do with mathematics but just wanted to vent out my emotions.

I know that my opinions regarding the education system don’t matter since there always have been smarter people (i.e. people scoring more than me) around me in my home, school and college (and according to this system, only the opinions of top scorers matter). But, since WordPress allows me to express my opinions, here are the few comics which are in sync with my opinions:


© Bill Watterson


couldn’t find the creator of this comic


© Awantha Artigala


© Bill Watterson

I don’t think there is any solution to this problem since there are so many human beings on earth (i.e large variety of minds…).


A topic I wanted to discuss for long time


If you are an average maths undergraduate student (like me), you might have ended up in a situation of choosing between “just completing the degree by somehow passing the courses without caring about the grades” and “repeating a course/taking fewer courses so as to pass all courses with nice grades only”. Following is a nice discussion from Reddit:

Understanding Geometry – 4


Aleksej Ivanovič Markuševič’s book, “Remarkable Curves” discusses the properties of ellipses, parabolas, hyperbolas, lemniscates, cycloids, brachistochrone, spirals and catenaries.  Among these “lemniscates” are the ones that I encountered only once before starting undergraduate education (all other curves appeared frequently in physics textbooks) and that too just to calculate the area enclosed by this curve. So I will discuss the properties of lemniscates in this post.

Let’s begin with the well-known curve, ellipse. An ellipse is the locus of points whose sum of distances from two fixed points (called foci) is constant. My favourite fact about ellipses is that we can’t find a general formula for the perimeter of an ellipse, and this little fact leads to the magical world of elliptic integrals. This, in turn, leads to the mysterious elliptic functions, which were discovered as inverse functions of elliptic integrals. Further, these functions are needed in the parameterization of certain curves, now called elliptic curves. For more details about this story, read the paper by Adrian Rice and Ezra Brown, “Why Ellipses are not Elliptic curves“.

Lemniscate is defined as the locus of points whose product of distances from two fixed points F_1 and F_2 (called foci) is constant. Lemniscate means, “with hanging ribbons” in Latin.  If the length of the segment \overline{F_1F_2} is c then for the midpoint of this line segment will lie on the curve if the product constant is c^2/4. In this case we get a figure-eight lying on its side.


Lemniscate of Bernoulli; By Kmhkmh (Own work) [CC BY 4.0], via Wikimedia Commons

The attempt to calculate the perimeter of the above curve leads to elliptic integral, hence can’t derive a general formula for its perimeter. Just like an ellipse!

If we equate the value of the constant product not to c^2/4 but to another value, the lemniscate will change its shape. When the constant is less than c^2/4, the lemniscate consists of two ovals, one of which contains inside it the point F_1, and the other the point F_2.


Cassini oval (x^2+y^2)^2−2c^2(x^2−y^2)=a^4−c^4; Source:

When the product constant is greater than c^2/4 but less than c^2/2, the lemniscate has the form of a biscuit. If the constant is close to c^2/4, the “waist” of the biscuit is very narrow and the shape of the curve is very close to the figure-eight shape.


Cassini oval (x^2+y^2)^2−2c^2(x^2−y^2)=a^4−c^4; Source:

If the constant differs little from c^2/2, the waist is hardly noticeable, and if the constant is equal or greater than c^2/2 the waist disappears completely, and the lemniscate takes the form of an oval.


Cassini oval (x^2+y^2)^2−2c^2(x^2−y^2)=a^4−c^4; Source:

We can further generalize this whole argument to get lemniscate with an arbitrary number of foci, called polynomial lemniscate.

Building Mathematics


Let’s talk about the work of a mathematician. When I was young (before highschool), I used to believe that anyone capable of using mathematics is a mathematician. The reason behind this was that being a mathematician was not a job for people like Brahmagupta, Aryabhatta, Fermat, Ramanujan (the names I knew when I was young). So by that definition, even a shopkeeper was a mathematician. And hence I had no interest in becoming a mathematician.

Then, during highschool, I came to know about the mathematics olympiad and was fascinated by the “easy to state but difficult to solve” problems from geometry, combinatorics, arithmetic and algebra (thanks to AMTIVipul Naik and Sai Krishna Deep) . I practiced many problems in hope to appear for the exam once in my life. But that day never came (due to bad education system of my state) and I switched to physics, just because there was lot of hype about how interesting our nature is (thanks to Walter Lewin). 

In senior school I realised that I can’t do physics, I simply don’t like the thought process behind physics (thanks to Feynman). And luckily, around the same time, came to know what mathematicians do (thanks to Uncle Paul). Mathematicians “create new maths”. They may contribute according to their capabilities, but no contribution is negligible. There are two kinds of mathematicians, one who define new objects (I call them problem creators) and others who simplify the existing theories by adding details (I call them problem solvers). You may wonder that while solving a problem one may create bigger maths problems, and vice versa, but I am talking about the general ideologies. What I am trying to express, is similar to what people want to say by telling that logic is a small branch of mathematics (whereas I love maths just for its logical arguments).

A few months before I had to join college (in 2014), I decided to become a mathematician. Hence I joined a research institute (clearly not the best one in my country, but my concern was just to be able to learn as much maths as possible).  Now I am learning lots of advanced (still old) maths (thanks to Sagar SrivastavaJyotiraditya Singh and my teachers) and trying to make a place for myself, to be able to call myself a mathematician some day.

I find all this very funny. When I was young, I used to think that anyone could become a mathematician and there was nothing special about it. But now I everyday have to prove myself to others so that they give me a chance to become a mathematician. Clearly, I am not a genius like all the people I named above (or even close to them) but I still want to create some new maths either in form of a solution to a problem or foundations of new theory and call myself a mathematician. I don’t want it to end up like my maths olympiad dream.

Magic Cubes


Last week I attended a talk (by a student) about Magic Squares. I learned a bunch of cool facts about them (like how to devise an algorithm to construct them). Towards the end of the talk, one student from the audience suggested the possibility of Magic Cubes. I got very excited about this idea since it pointed towards the stereotypical mathematical ideology of generalizing the examples in order to see the deeper connections.

I myself don’t know much about Magic Cubes (or even Magic Squares) but would like to quote W. W. Rouse Ball & H. S. M. Coxeter from pp. 217 the book “Mathematical Recreations and Essays” (11th Ed.) :

A Magic Cube of the n^{th} order consists of the consecutive numbers from 1 to n^3, arranged in the form of a cube, so that the sum of the numbers in every row, every column, every file, and in each of the four diagonals (or “diameters “), is the same-namely, \frac{1}{2}(n^3 + 1). This sum occurs in 3n^2 + 4 ways. I do not know of any rule for constructing magic cubes of singly-even order. But such cubes of any odd or doubly-even order can be constructed by a natural extension of the methods already used for squares.

I would like to read about these magic hyper-cubes in future. And if you know something interesting about them, let me know in the comments below.

Under 40


The age of 40 is considered special in mathematics because it’s an ad-hoc criterion for deciding whether a mathematician is young or old. This idea has been well established by the under-40 rule for Fields Medal, based on Fields‘ desire that:

while it was in recognition of work already done, it was at the same time intended to be an encouragement for further achievement on the part of the recipients and a stimulus to renewed effort on the part of others

Though it must be noted that this criterion doesn’t claim that after 40 mathematicians are not productive (example: Yitang Zhang).  So I wanted to write a bit about the under 40 leading number theorists which I am aware of (in order of decreasing age):

  • Sophie Morel: The area of mathematics in which Morel has already made contributions is called the Langlands program, initiated by Robert Langlands. Langlands brought together two fields, number theory and representation theory. Morel has made significant advances in building that bridge. “It’s an extremely exciting area of mathematics,” Gross says, “and it requires a vast background of knowledge because you have to know both subjects plus algebraic geometry.” [source]
  • Melanie Wood: Profiled at age 17 as “The Girl Who Loved Math” by Discover magazine, Wood has a prodigious list of successes. The main focus of her research is in number theory and algebraic geometry, but it also involves work in probability, additive combinatorics, random groups, and algebraic topology.  [source1, source2]
  • James Maynard:  James is primarily interested in classical number theory, in particular, the distribution of prime numbers. His research focuses on using tools from analytic number theory, particularly sieve methods, to study primes.  He has established the sensational result that the gap between two consecutive primes is no more than 600 infinitely often. [source1, source2]
  • Peter Scholze: Scholze began doing research in the field of arithmetic geometry, which uses geometric tools to understand whole-number solutions to polynomial equations that involve only numbers, variables and exponents. Scholze’s key innovation — a class of fractal structures he calls perfectoid spaces — is only a few years old, but it already has far-reaching ramifications in the field of arithmetic geometry, where number theory and geometry come together. Scholze’s work has a prescient quality, Weinstein said. “He can see the developments before they even begin.” [source]

Intra-mathematical Dependencies


Recently I completed all of my undergraduate level maths courses, so wanted to sum up my understanding of mathematics in the following dependency diagram:

mat-dependency (1)

I imagine this like a wall, where each topic is a brick. You can bake different bricks at different times (i.e. follow your curriculum to learn these topics), but finally, this is how they should be arranged (in my opinion) to get the best possible understanding of mathematics.

As of now, I have an “elementary” knowledge of Set Theory, Algebra, Analysis, Topology, Geometry, Probability Theory, Combinatorics and Arithmetic. Unfortunately, in India, there are no undergraduate level courses in Mathematical Logic and Category Theory.

This post can be seen as a sequel of my “Mathematical Relations” post.