Author Archives: gaurish

About gaurish

Life is never fair. So I made my life a mathematical fair.

Education System


This blog post has nothing to do with mathematics but just wanted to vent out my emotions.

I know that my opinions regarding the education system don’t matter since there always have been smarter people (i.e. people scoring more than me) around me in my home, school and college (and according to this system, only the opinions of top scorers matter). But, since WordPress allows me to express my opinions, here are the few comics which are in sync with my opinions:


© Bill Watterson


couldn’t find the creator of this comic


© Awantha Artigala


© Bill Watterson

I don’t think there is any solution to this problem since there are so many human beings on earth (i.e large variety of minds…).


Listening Maths


Earlier I told about new mediums now available to enjoy maths. You can find a list of YouTube channels, to begin with here. And a list of dedicated math podcasts here.

In this post, I want to point out some episodes from the  podcast “In Our Time” which discuss mathematics:

Apart from them, another podcast worth listening to is “The Wizard of Mathematics, Srinivasa Ramanujan” by Prof. Srinivas Kotyada on FM Gold:

A topic I wanted to discuss for long time


If you are an average maths undergraduate student (like me), you might have ended up in a situation of choosing between “just completing the degree by somehow passing the courses without caring about the grades” and “repeating a course/taking fewer courses so as to pass all courses with nice grades only”. Following is a nice discussion from Reddit:

A sequence I didn’t like


Following is a problem I encountered many times in my high school olympiads, but was never able to solve it. Hence didn’t like it.

What is the 100th term in the sequence 1,2,2,3,3,3,4,4,4,4,5,\ldots?

Following is a quick solution:

In this post, I will discuss the solution given in The Green Book of Mathematical Problems (problem 14).

Determine a function f(n) such that the n^{th} term of the sequence 1,2,2,3,3,3,4,4,4,4,5,\ldots is given by \lfloor f(n)\rfloor.

Let’s denote the n^{th} number of the sequence by a_n, i.e. a_n=\lfloor f(n)\rfloor. The integer m first occurs in the sequence when each of the integers from 1 to m-1 have already appeared 1 to m-1 times, respectively. Hence, if a_n=m then
n = [1 + 2 + 3 + \ldots + (m-1)]+1 +\ell = \frac{m(m-1)}{2} + 1 + \ell
for \ell = 0,1,2,\ldots, m-1.

Hence we have:
\displaystyle{0\leq n - \frac{m(m-1)}{2} - 1 \leq m-1}

\displaystyle{\Rightarrow \frac{m^2-m+2}{2}\leq n \leq \frac{m^2+m}{2}}

\displaystyle{\Rightarrow m^2-m+2\leq 2n \leq m^2+m}

\displaystyle{\Rightarrow \left(m-\frac{1}{2}\right)^2+\frac{7}{4}\leq 2n \leq \left(m+\frac{1}{2}\right)^2-\frac{1}{4}}

\displaystyle{\Rightarrow (2m-1)^2+7\leq 8n \leq (2m+1)^2 - 1}

\displaystyle{\Rightarrow (2m-1)^2 \leq 8n - 7 \leq (2m+1)^2 - 8}

\displaystyle{\Rightarrow (2m-1)^2 \leq 8n - 7 < (2m+1)^2}

\displaystyle{\Rightarrow 2m-1 \leq \sqrt{8n-7}<2m+1}

\displaystyle{\Rightarrow m \leq \frac{1+\sqrt{8n-7}}{2} < m+1}

\displaystyle{\Rightarrow m=\left\lfloor \frac{1+\sqrt{8n-7}}{2} \right\rfloor}

Hence we have a_n = \left\lfloor \frac{1+\sqrt{8n-7}}{2} \right\rfloor. Thus, we have

\displaystyle{\boxed{f(n) =\frac{1+\sqrt{8n-7}}{2}}}

Now compared to the earlier solution obtained by observing the pattern, one might ask “Is there is a better formula?”. For that, you might also look at the discussion at Math.SE.

Prime Number Problem


Following is a problem about prime factorization of the sum of consecutive odd primes. (source: problem 80 from The Green Book of Mathematical Problems)

Prove that the sum of two consecutive odd primes is the product of at least three (possibly repeated) prime factors.

The first thing to observe is that sum of odd numbers is even, hence the sum of two consecutive odd primes will be divisible by 2. Let’s see factorization of some of the examples:

3 + 5 = 2\times 2 \times 2
5 + 7 = 2 \times 2\times 3
7+11 = 2 \times 3\times 3
11+13 = 2 \times 2 \times 2 \times 3
13+17 = 2 \times 3 \times 5
17+19 = 2\times 2\times 3 \times 3
19+23 = 42 = 2\times 3\times 7
23+29 = 52 = 2\times 2 \times 13

Now let p_n and p_{n+1} be the consecutive odd primes, then from above observations we can conjecture that either p_n+p_{n+1} is product of at least three distinct primes or p_n+p_{n+1}= 2^k p^\ell for some odd prime p such that k+\ell \geq 3.

To prove our conjecture, let’s assume that p_n+p_{n+1} is NOT a product of three (or more) distinct primes (otherwise we are done). Now we will have to show that if p_n+p_{n+1}= 2^k p^\ell for some odd prime p then k+\ell \geq 3.

If \ell = 0 then we should have k\geq 3. This is true since 3+5=8.

Now let \ell > 0. Since k\geq 1 (sum of odd numbers is even), we just need to show that k=1, \ell=1 is not possible. On the contrary, let’s assume that k=1,\ell = 1. Then p_n+p_{n+1} = 2p. By arithmetic mean property, we have

\displaystyle{p_n < \frac{p_n+p_{n+1}}{2}} = p <p_{n+1}

But, this contradicts the fact that p_n,p_{n+1} are consecutive primes. Hence completing the proof of our conjecture.

This is a nice problem where we are equating the sum of prime numbers to product of prime numbers. Please let me know the flaws in my solution (if any) in the comments.

Birch and Swinnerton-Dyer Conjecture


This is part of the 6 unsolved Millennium Problems. Following is a beautiful exposition of the statement and consequences of this conjecture:

Anybody with high-school level knowledge can benefit from this video.